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Abstract
The sedimentation dynamics of extremely low polydispersity, non-colloidal,
particles are studied in a liquid fluidized bed at low Reynolds number, Re � 1.
When fluidized, the system reaches a steady state, defined where the local
average volume fraction does not vary in time. In the steady state, the velocity
fluctuations and the particle concentrations are found to strongly depend on
height in the particle column. Using our results, we test a recently developed
stability model (Segrè 2002 Phys. Rev. Lett. 89 254503) for steady state
sedimentation. The model describes the data well, and shows that in the steady
state there is a balancing of particle fluxes due to the fluctuations and the
concentration gradient. Some results are also presented for the dependence
of the concentration gradient in fluidized beds on particle size; the gradients
become smaller as the particles become larger and fewer in number.

1. Introduction

The sedimentation of a collection of monodisperse spheres in liquids is a fundamental problem
in physics and is of wide importance in chemical reactors [2]. From numerous experiments [3–
6], computer simulations [7], and theories [8–12], the following general picture has emerged.
On a macroscopic scale, a collection of spheres of size D, at an average concentration φ0,
settle at an average velocity vsed(φ). On a microscopic, or particle scale, however, there are
large non-uniformities or fluctuations in both the local concentration σφ and particle velocities
σv . An examination of the fluctuations [4, 6] shows that the particles spontaneously organize
themselves into large correlated regions, or blobs, of size ξ � D, as they settle. Significantly,
it has been shown that the large scale velocity fluctuations are due to local density fluctuations.
Regions where the local concentration is higher than the average fall more quickly than the
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average settling rate, while less dense regions fall more slowly than the average. Extensive
experimental work has yielded simple scaling relations for ξ and σv in terms of φ and a [4, 5],
yet a consensus on the theoretical origin or understanding of these results is still lacking.

One of the implicit assumptions in many of the experimental and theoretical works in
sedimentation is that the properties of the system, including the mean concentration and
fluctuation values, are uniform throughout the settling process. Recently, however, Tee et al
[13] found that an initially uniform suspension can destabilize and become highly stratified in
concentration as the particles settle. In addition, the concentration profiles continued to evolve
over the entire settling time. These observations suggest that the general assumption of steady
state may not always be achieved during sedimentation experiments.

To search for a state of steady state sedimentation, Segrè [1] recently conducted
experiments in a liquid–solid fluidized bed. In a fluidized bed, liquid is pumped upwards
through the column to counteract the force of gravity on the particles. When properly balanced,
the particles are perpetually falling, and a steady state is ensured. Segrè found that all of the
properties of the particle dynamics strongly depend upon the height in the particle column. A
new flux balance model, relating the stratification in concentration to the fluctuations in φ and
v, was able to explain the observed stability of the particle column.

In this paper, we expand upon this earlier work in two significant ways. First, we test
whether particle size polydispersity plays a role in the observed stratification in concentration,
by using particles that are much more uniform in size. The beads in this study are among
the most monodisperse glass beads commercially available, with a measured size variation of
σD/D = 1.5%, as compared to σD/D = 9.5% in the previous work [1]. Our main finding is
that a reduction in particle size polydispersity from 9.5 to 1.5% does not significantly change
or remove the findings of height dependent properties and concentration stratification. Second,
we examine how the stratification in concentration observed during steady state sedimentation
depends upon particle size and particle number. We conduct a series of experiments on particle
columns of identical heights H and average concentrations φ0 = 10%, but with particle sizes
ranging from D = 109 to 490 µm. We find that the degree of stratification changes with
particle size and particle number. The fewer the number of particles in the system, the smaller
the stratification in concentration.

2. Experiment description

2.1. Particles and fluids

We use spherical glass beads, of mean diameter D = 207 µm, that have been specially
filtered by the manufacturer (Mo-Sci Corp.) to be of extremely low polydispersity in size.
Figure 1 shows a micrograph of a collection of the spheres. The particles lay on a flat plate
and through a gentle shaking quickly organize into highly ordered forms, indicative of a low
size polydispersity. To accurately determine the particle size polydispersity, we measured the
variation in settling velocities of 50 individual spheres. The standard deviation of the particle
settling rates is indeed extremely low, σv/〈v〉 = 3.0%. Using the Stokes formula, v0 ∝ �ρD2,
and assuming the particles are all of equal density, the variation in settling rates corresponds
to a variation in particle size of σD/D = 1.5%.

The glass beads are dispersed in viscous solutions of glycerol and water chosen so that
inertial forces during the experiments are negligible. Specifically, the particle Reynolds number
is of order Re = v0aρ/η ≈ 5×10−3 � 1. Additionally, particle motions always occur at very
high Peclet numbers (Pe ≈ 109), so that Brownian diffusion is negligible. The temperature is
at the ambient value T = 21 ◦C.
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Figure 1. Micrograph of a random sampling of D = 207 µm glass spheres.

Table 1. Particle and fluidized bed properties.

D (µm) σD/D η (cp) v0 (mm s−1) Re Hbed (cm) 〈φbed〉
207 0.015 27 1.21 ± 0.03 0.005 18.5 0.10

2.2. Fluidized bed

The fluidized bed consists of a fluid and particle filled glass cell through which fluid is pumped
upwards to counteract the particle settling and fluidize the particles. The sample cell is a
rectangular glass tube of dimensions D × W × H = 8 × 80 × 305 mm3. The bottom of the
cell is glued into a metal base into which the water/glycerol mixture is continuously pumped.
The overflow liquid at the top of the cell recirculates back into the pump, forming a closed
loop. To enable a uniform flow into the cell, a 2 cm thick nylon mesh is packed with 0.5 mm
diameter beads and glued across the entrance to the cell at the bottom.

With the liquid pump off, the spheres fall to the bottom of the cell and form a sediment
≈2.9 cm tall. When the pump is on, the particles expand upward, filling a region above the
bottom up to a height dependent upon the pumped fluid velocity vpump. We set the pumped
fluid velocity to vpump/v0 = 0.727 ± 0.030 to expand the particle column expanded to a total
height Hbed ∼ 18.5 cm so that the average volume fraction 〈φbed〉 = 0.638(2.9/18.5) ∼ 0.10.

The main feature of a stable fluidized bed is that the average particle velocities in the
laboratory frame are zero; i.e. fluid is pumped upwards at a rate that balances the particle
settling rate downwards, and the particles are perpetually sedimenting.

2.3. PIV imaging system: velocity flow maps

Particle velocities are measured using the technique of particle image velocimetry (PIV) [14].
The apparatus consists of a (1008 × 1024 pixels) CCD camera, a synchronized stroboscope
illuminating the cell from behind, and image processing hardware and software from Dantec
Instruments. Velocity maps consisting of 62 × 62 vectors are extracted by comparing two
closely timed pictures using standard PIV techniques. Each vector is the average velocity of
two to four spheres.

Figure 2 shows typical velocity vector maps from a stable fluidized bed, where (a)
corresponds to a position near the top and (b) to a position near the middle of the particle
column. For scale, we also show the magnitude of the Stokes settling velocity v0. Both
velocity maps show regions moving both upwards and downwards, but the magnitudes of the
velocities are significantly larger near the middle than near the top.
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Figure 2. Velocity vector maps of a stable fluidized bed at 〈φbed〉 = 0.10. Figures (a) and (b)
correspond to respective positions near to the top and near to the middle of the particle column.
The single arrow on the right gives the corresponding scale of the Stokes settling velocity v0. Note
that the velocity scale in (a) is magnified relative to (b) by a factor of 2 for clarity.

To quantify these observations, we measure the velocity maps and the local volume
fractions at different heights along the particle column. We extract from the velocity maps
the mean velocities, vx = 〈vi,x 〉, and vz = 〈vi,z〉, and the root mean square (rms) velocity
fluctuations, σ z

v = 〈(vi,z − vz)
2〉1/2 and σ x

v = 〈(vi,x − vx)
2〉1/2, where 〈· · ·〉 represents an

average over ∼50 vector maps of 3844 vectors each.

2.4. Light scattering system; particle concentrations

Local particle volume fractions are determined using a laser light scattering method that
measures the local optical turbidity at various heights in the particle column. To do this,
we pass an expanded He–Ne laser beam, of diameter ∼0.5 cm, through the fluidized bed at a
particular height and measure the transmitted laser intensity IT using a CCD camera. Results
for a typical sample are shown in figure 3. Figure 3(a) shows the measured intensity profiles
at different heights in the particle column. It is evident that the transmitted intensity varies
with height, with the highest intensity at the top, and the lowest at the bottom. To find the
corresponding particle concentrations, we need a calibration reference for the dependence of
the transmitted intensity on particle concentration. To do this, we make several reference
fluidized beds of differing average concentration φbed and measure the transmitted intensity
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Figure 3. Measurement of local particle concentrations. (a) Transmitted laser intensity I versus
height z through a fluidized bed at average volume fraction 〈φ〉 = 0.10. (b) Intensity versus
φ calibration. Transmitted laser intensities measured at mid-height in fluidized beds of average
volume fraction 0.046 � 〈φ〉 � 0.142 as labelled. For clarity, only every 25th point is plotted. The
solid curves are fits to Gaussian functions. The height dependent volume fraction φ(z) is extracted
by comparing the I (z) curve in (a) with the calibration curve I (φ) in (b).

patterns at mid-height, shown in figure 3(b). Fits of I (z) and I (φ) in figures 3(a) and (b)
to Gaussian functions yield peak intensity values Ipk. By comparing the measured values of
Ipk(z) in our fluidized bed with the reference values of Ipk(φ) we are able to extract the height
dependent concentration φ(z) in the fluidized bed.

3. Results

3.1. Velocity fields—fluctuations

Figure 4 displays the values of the average velocities vx and vz , and the velocity fluctuations
σ x

v and σ z
v for the stable fluidized bed. Measurements are taken at differing heights from near

to the bottom up to the top at a height of Hbed ∼ 18.5 cm. The average velocities vx ∼ 0
and vz ∼ 0, indicative of stable fluidization. The velocity fluctuations show a strong height
dependence and approach zero magnitude at the top of the particle column. At all heights the
level of mixing in the vertical direction is approximately twice that in the horizontal direction,
i.e. σ z

v ≈ 2.0σ x
v .

3.2. Velocity fields—spatial correlation lengths

The velocity vector maps, an example of which is shown in figure 2, display large regions
where the velocity vectors are spatially correlated. To quantify this, we calculate several
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Figure 4. Normalized average velocities vx (open squares), and vz (open circles), and velocity
fluctuations σ x

v (closed squares), and σ z
v (closed circles), as a function of height z. The solid lines

are polynomial fits to σ z
v , while the dashed lines are these fits divided by a constant of 2.
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Figure 5. Correlation lengths of the velocity fluctuations in the longitudinal, ξZ Z , and transverse,
ξZ X , directions. The lines are linear fits to the data.

normalized spatial correlation functions of the vertical velocity vz . The first is a longitudinal
correlation function, defined as CZ Z (z) = 〈vz(0)vz(z)〉/〈vz(0)2〉, and the second is a transverse
one, defined as CZ X (x) = 〈vz(0)vz(x)〉/〈vz(0)2〉. Here, 〈· · ·〉 represents an ensemble
average over ∼50 individual vector maps. The correlation functions fit well to the forms
CZ Z (z) = exp (−z/ξZ Z ) and CZ X (z) = exp (−z/ξZ X ), allowing us to extract ξZ Z and ξZ X ,
the characteristic longitudinal and transverse correlation lengths of the velocity fluctuations.
Results for ξZ Z and ξZ X are shown in figure 5. The correlation lengths are not uniform in
height, and exhibit a monotonic decrease towards the top part of the column [1].

3.3. Concentration profiles

To examine the concentration profiles, and in particular look for the presence or absence of
a vertical density stratification, we use the laser scattering method described in section 2.4
above. This technique allows for highly accurate determinations of the local particle volume
fraction φ(z) as a function of height z.

In figure 6 we show results for the local particle volume fraction φ(z) as a function of
height z. There is a marked stratification in concentration with height; the concentration is
significantly greater at the bottom than at the top. Note also the sharp interface at the top,
with φ dropping from the values φ ∼ 0.06 to φ ∼ 0.00 within ∼0.5 cm. While most of the
concentration variation occurs in the highest portions of the particle column, measurable and
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Figure 6. Particle volume fraction φ as a function of height z. The dashed line represents the mean
particle concentration, φ = 0.10.

Table 2. Measured properties of the fluidized bed described in table 1. D is the particle diameter
and Ntot the total number of particles fluidized. vpump/v0 is the normalized fluidizing pump
velocity upwards. vsed

top /v0 is the initial sedimentation velocity of the top interface, measured just
after the fluid pump is turned off. φtop is the particle concentration (%) measured just below the
top interface. The particle concentrations φ

pump
top and φsed

top are calculated from vpump/v0 and vsed/v0

using the Richardson–Zaki equation v/v0 = (1 − φ)5.5.

D (µm) Ntot vpump/v0 vsed
top /v0 φtop φpump φsed

top

207 2.7 × 106 0.727 ± 0.030 0.686 ± 0.030 6.0 ± 0.3 5.6 ± 0.7 6.6 ± 0.7

significant gradients occur at all heights. For convenience, we refer to the concentration value
at the closest measured point to the top interface as φtop, and we find φtop = 6.0 ± 0.3%.

3.4. Particle sedimentation and fluid pump velocities

The stratification in concentration seen in figure 6 can help explain the value of the normalized
fluid pump velocity vpump/v0, listed in table 2. If the particle column were perfectly uniform
in concentration at the average value φ0 = 0.10, one would then expect that the upward fluid
velocity needed to achieve stable fluidization would be equal and opposite to the sedimentation
velocity at volume fraction φ0, i.e. vpump/v0 = −vsed(φ0)/v0. To test this, we take advantage
of the well known equation for the sedimentation velocity of a collection of spheres at volume
fraction φ, the Richardson–Zaki (RZ) equation [15], vsed(φ)/v0 = (1 − φ)5.5. This equation
allows us to calculate the sedimentation velocity at average concentration φ = 0.10, the value
being vsed(φ = 0.10)/v0 = 0.56. As seen in table 2, this value is more than 20% smaller than
the measured pump velocity, vpump/v0 = 0.727 ± 0.030. In essence, the velocity of the fluid
pumped upwards is greater than the average particle sedimentation velocity downwards. The
net result, which will be an important component of how fluidized beds stabilize themselves
against large fluctuations as discussed in section 4, is that the particles are being pushed upwards
at all times by this mismatch in sedimentation and pump velocities.

If the fluid pump velocity does not match the calculated sedimentation velocity at
φ = 0.10, then one can ask to what concentration φ corresponds the value vpump? To
answer this, we use the value of measured values vpump/v0 and the RZ equation to calculate
φpump = 1 − (vpump/v0)

1/5.5; we find φpump = 5.6 ± 0.7%. Significantly, this value is very
similar to the measured concentration at the top of the particle column, φtop 	 6.0 ± 0.3%.

To gain a global perspective of the local settling rates throughout the particle column, we
plot in figure 7 the calculated sedimentation velocities vsed(φ(z))/v0 = (1 −φ(z))5.5 from the
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Figure 7. Particle sedimentation velocities vsed/v0, calculated using the height dependent volume
fractions φ(z) in figure 6 and the Richardson–Zaki equation vsed/v0 = (1 − φ)5.5, as a function
of height z. The dashed line represents the value of the normalized fluid pump velocity, vpump/v0,
used to stabilize the particle column.

height dependent concentration profiles φ(z) shown in figure 6. Also indicated by the dashed
line is the fluid pump velocity used to achieve stable fluidization. The value of vpump/v0 closely
matches the settling rate at the top of the column, but is significantly greater that vsed/v0 at all
other heights. The net difference between the fluid velocity pumped upwards and the settling
velocity downwards is defined as the excess velocity vex/v0 = [vpump − vsed(z)]/v0.

4. Stability analysis

The results presented above give a rather complete characterization of the concentration
profiles and particle velocity dynamics in a stable fluidized bed consisting of extremely low
polydispersity spheres (σD/D = 1.5%). We find that all of the properties measured display
marked dependences on height in the particle column. A fluidized bed can be thought of as
a system where the particles are sedimenting perpetually. The results for the rms velocity
fluctuations and the concentration profiles are stable in time and represent the steady state
behaviour of the system. The finding of steady state behaviour has important implications
which we can exploit to help understand the concentration and fluctuation profiles observed
during fluidization. In section 4.1 we describe the criterion for fluidized bed stability in terms
of a general flux balance relation. In sections 4.1.1, 4.1.2 and 4.2 we evaluate and test this
stability criterion using the recently developed model of Segrè [1].

4.1. General condition for fluidized bed stability

In the steady state the average volume fraction at all points in the particle column is constant
in time, i.e. ∂φ(z)/∂ t = 0. This condition can be written in terms of particle fluxes using
the conservation of mass, or continuity, equation ∂φ(z)/∂ t = −∇ · j(z) = 0 [15], where
j(z) = φ(z)v(z), and v(z) is a locally coarse grained velocity. To account for the fluctuations
in the system, we expand the particle flux to first order, j(z) = j0(z) + δj(z), and assuming
∂ jx/∂x = ∂ jy/∂y = 0, and j (z) = jz(z), the continuity equation yields a requirement that
gradients in the local particle fluxes sum to zero, i.e.

∂ j0(z)

∂z
= −∂δ j (z)

∂z
. (1)

This stability condition can be integrated to yield

j0(z) = −
∫ H

z
dz′

[
∂δ j (z′)

∂z′

]
, (2)
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where we have left the fluctuation term in an integral form which will be easier for direct
evaluation as described below.

The stability criterion equation (2) can be expressed directly in terms of the quantities
measured, the particle concentration and velocity fields, by expanding φ(z) → φ0(z) + δφ(z)
and v(z) → v0(z) + δv(z), yielding for the zeroth order particle flux (the lhs of equation (2)),

j0(z) = 〈φ0(z)v0(z)〉, (3)

and for the particle flux due to fluctuations (the rhs of equation (2)),

δ j (z) = 〈φ0(z)δv(z) + δφ(z)v0(z) + δφ(z)δv(z)〉, (4)

where 〈· · ·〉 represents an ensemble average at each height.
The stability criterion, equation (2), expresses the general relationship that must exist for

a particle fluidized bed to be stable. To evaluate and test this criterion on our data we need
to develop expressions for j0(z) and δ j (z) in terms of the measured quantities, and we follow
closely below the development from Segrè [1].

4.1.1. Particle flux due to the stratification in concentration. The zeroth order particle flux,
j0(z) = 〈φ0(z)v0(z)〉, is found from the difference between the mean upward flux due to
the pump flow, jpump(z) = +φ(z)vpump, and the mean downward flux due to sedimentation,
jsed(z) = −φ(z)vsed(z). The net flux is given by the difference

j0(z) = φ(z)vex(z) = φ(z)[vpump − vsed(z)], (5)

where we define the excess velocity as vex(z) ≡ vpump − vsed(z). The height dependent
sedimentation velocities vsed(z), shown in figure 7, are calculated from the concentration
profiles φ(z) and the RZ equation. At the top of the column, vsed(z) and vpump are nearly equal,
but at all other positions the upward fluid velocity is greater than the downward sedimentation
velocities, i.e. vpump > vsed(z), resulting in a net particle flux upwards.

4.1.2. Particle flux due to velocity and concentration fluctuations. The general relation for
the particle flux due to fluctuations, equation (4), is expressed in terms of the fluctuations
in velocity and volume fraction. The first two terms are zero because 〈δv(z)〉 = 0 and
〈δφ(z)〉 = 0. The product 〈δφδv〉 is non-zero because fluctuations in volume fraction and
velocity are correlated [6]. The more concentrated regions move downwards, (+δφ)(−δv), and
the less concentrated regions move upwards, (−δφ)(+δv), so that δ j (z) < 0 and fluctuations
result in a net particle flux downwards. To estimate δφ, we use a simple model based
upon random statistics [2]. Fluctuations occur in regions of linear size ξ , and contain on
average Nξ = φξ3/a3 particles, assuming that the particles are randomly distributed. The rms
fluctuations are determined as σNξ

= √
Nξ S(φ), where S(φ) accounts for excluded volume

effects and is calculated from the Carnahan–Starling equation for hard spheres [15]. The rms
fluctuations in volume fraction are then σφ = σNξ

(a/ξ)3 = √
φS(φ)a3/ξ3.

Approximating the values of δφ → σφ and δv → σ z
v , and replacing the derivative term

as ∂/∂z → Cξ /ξ , where Cξ is an adjustable constant expected to be of order unity, the flux
due to fluctuations is

∂[δ j (z)]/∂z 	 −Cξ σφσv/ξ, (6)

which can be written out in terms of the measured quantities using the expression for σφ as

∂[δ j (z)]/∂z = −Cξ σ
z
v (z)

√
S(φ)φ(z)a3/ξ(z)5. (7)
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Figure 8. Stability test: particle fluxes j0(z) (up triangle), from equation (5), and δ j (z) (down
triangle), from equation (8), and their sum j0(z) + δ j (z) (◦) as a function of height z in a stable
fluidized bed. With the constant cξ = 0.80 the particle fluxes sum to near zero at all heights,
indicative of a stable steady state particle column.

The negative values of δ j (z) indicate that the coupling of velocity and concentration fluctuations
results in a net flux of particles downwards. The particle flux due to fluctuations, the rhs of
equation (2), is then

δ j (z) = −Cξ

∫ H

z
σ z

v (z ′)

√
S(φ)φ(z′)a3

ξ(z′)5
dz′. (8)

4.2. Test of criterion for fluidized bed stability

We now explicitly test the stability condition, equation (2), using the expressions for j0(z) and
δ j (z) in equations (5) and (8). All of the variables needed to evaluate equations (5) and (8),
with the exception of vsed(z), were directly measured. The sedimentation velocities vsed(z)
were calculated from the our data for φ(z) using the RZ equation [15]. Polynomial fits to our
data for φ(z), ξ(z) and σ z

v (z) were used in the evaluation.
The results for the particle fluxes due to the concentration stratification, j0(z), the velocity

and concentration fluctuations, δ j (z), and their sum, j0(z) + δ j (z), are shown in figure 8.
The values for j0(z) indicate near zero net flux at the top of the bed, due to the matching
of the pumped fluid and particle sedimentation velocities, and positive and increasing fluxes
towards the lower part of the bed where the pumped fluid velocities are greater than the local
sedimentation rates. At the top of the column δ j (z) also vanishes due to the vanishing of the
velocity fluctuations, while negative and increasing fluxes are found towards the lower part of
the bed where the fluctuations in σ z

v (z) and σφ(z) become larger.
Strikingly, the net particle flux, obtained from summing the integrals of the two flux

gradient terms, i.e. j0(z) and δ j (z) together, is near zero over the entire height of the column.
These results show that the particle column is stable because the particle flux downward due
to fluctuations is nearly equal and opposite to the flux upwards due to the stratification in φvex.
The equality of the flux gradients leads to the stability relation, expressed in derivative form,

∂[φ(z)vex(z)]

∂z
= −Cξσ

z
v (z)

√
S(φ)φ(z)a3

ξ(z)5
, (9)

which shows that the magnitudes of the fluctuations are related to the degree of stratification.
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concentration in all the beds, φ0 = 0.10, and N is the total number of particles in each fluidized
bed.

4.3. Fluidized beds with varying particle sizes

The results above show that a strong stratification in concentration is present during fluidization;
the concentration at the top of the particle column is significantly lower than the mean. How
does this stratification vary with particle size or the number of particles in the system? To
answer this, we examine a series of four fluidized beds with identical mean concentrations,
φ0 = 0.10, identical particle column heights, H ≈ 18.5 cm, but differing particle sizes,
with D = 109, 207, 309, and 490 µm. While a full accounting of these experiments is in
preparation [16], we show in figure 9 measured values of the volume fraction just below
the top interface, φtop. The degree of stratification changes with particle size. For the
largest particles, D = 490 µm, the difference of the top from the mean (φ = 0.10) is only
�φ = (0.10 − φtop) ∼ 0.016. With decreasing particle size this value increases significantly,
equaling �φ ∼ 0.063 for the smallest particles. In terms of the total number of particles N
fluidized, the system becomes more uniform as N decreases.

5. Conclusions

The sedimentation dynamics of non-colloidal spheres were studied in a liquid fluidized bed at
low Reynolds number. The spheres were of much higher uniformity in size than those used in
prior studies [1]. During fluidization, the system reached a steady state, defined where the local
average volume fraction does not vary in time. In steady state, the velocity fluctuations and the
particle concentrations were found to strongly depend on height in the particle column. Using
our results, we tested a recently developed stability model [1] for steady state sedimentation.
The model describes our data well, and shows that in the steady state there is a balancing of
particle fluxes due to the fluctuations and the concentration gradient. Some results are also
presented for the dependence of the concentration gradient in fluidized beds on particle size;
the gradients become smaller as the particles become larger and fewer in number. The large
question that remains as yet unanswered is what controls the degree of particle stratification
or the fluctuation magnitudes. The stability model connects together these two quantities, but
cannot a priori predict either of their values in the absence of knowledge of the other.
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